Đề bài: (Câu hỏi của bạn
Love Rain hỏi trên facebook
Trợ Giúp Toán Học)
Trong mặt phẳng với hệ trục toạ độ Oxy, cho hình chữ nhật ABCD có tâm $I\left( {\dfrac{3}{2}; - 1} \right)\,\& \,M\left( { - 1; - 1} \right)$ là điểm nằm trên cạnh AD sao cho MD=2MA. Biết đỉnh A có tung độ dương và trong tam giác AMI có $\sin \,\widehat {AMI} = \dfrac{{\sqrt {65} }}{5}\,\sin \,\widehat {MAI}.$ Tìm toạ độ các đỉnh của hình chữ nhật ABCD.
Giải:
$\begin{array}{l}
Do\,\left\{ \begin{array}{l}
\sin \,\widehat {AMI} = \dfrac{{\sqrt {65} }}{5}\,\sin \,\widehat {MAI}\\
\dfrac{{AI}}{{\sin \,\widehat {AMI}\,}} = \dfrac{{MI}}{{\sin \,\widehat {MAI}\,}} = 2R
\end{array} \right.\\
\Rightarrow \dfrac{{\sqrt {65} }}{5} = \dfrac{{\sin \,\widehat {AMI}\,}}{{\sin \,\widehat {MAI}\,}} = \dfrac{{AI}}{{MI}} \Leftrightarrow 5A{I^2} = 13M{I^2}\left( * \right)\\
Coi\,\left\{ \begin{array}{l}
AB = a\\
AD = b
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
AI = \dfrac{{\sqrt {{a^2} + {b^2}} }}{2}\\
MI = \sqrt {{{\left( {\dfrac{a}{2}} \right)}^2} + {{\left( {\dfrac{b}{2} - \dfrac{b}{3}} \right)}^2}} = \dfrac{{\sqrt {9{a^2} + {b^2}} }}{6} = \dfrac{5}{2}
\end{array} \right.
\end{array}$