2 + 6y = \frac{x}{y} - \sqrt {x - 2y} \,\left( 1 \right)\\
\sqrt {x + \sqrt {x - 2y} } = x + 3y - 2\left( 2 \right)
\end{array} \right.$
Giải:
Ta có: $\ \left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}
2y + 6{y^2} = x - y\sqrt {x - 2y} \\
y \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left( {x - 2y} \right) - y\sqrt {x - 2y} - 6{y^2} = 0\\
y \ne 0
\end{array} \right.$
$\ \Leftrightarrow \left\{ \begin{array}{l}
{\left( {\frac{{\sqrt {x - 2y} }}{y}} \right)^2} - \frac{{\sqrt {x - 2y} }}{y} - 6 = 0\\
y \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{t^2} - t - 6 = 0\\
t = \frac{{\sqrt {x - 2y} }}{y}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
t = \frac{{\sqrt {x - 2y} }}{y} = 3\\
t = \frac{{\sqrt {x - 2y} }}{y} = - 2
\end{array} \right.$
- Xét $\ \sqrt {x - 2y} = 3y\left( {x + 3y} \right) - \sqrt {x + 3y} - 2 = 0$
t = \sqrt {x + 3y} \left( {t \ge 0} \right)\\
{t^2} - t - 2 = 0
\end{array} \right. \Leftrightarrow t = \sqrt {x + 3y} = 2 \Rightarrow \left\{ \begin{array}{l}
x + 3y = 4\\
\sqrt {x - 2y} = 3y
\end{array} \right.$
$\ \Leftrightarrow \left\{ \begin{array}{l}
x = 4 - 3y\\
\sqrt {4 - 5y} = 3y
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 4 - 3y\\
0 < y \le \frac{4}{5}\\
4 - 5y = 9{y^2}
\end{array} \right. \Leftrightarrow \left( {x;y} \right) = \left( {\frac{8}{3};\frac{4}{9}} \right).$
- Xét $\ \sqrt {x - 2y} = - 2y\left\{ \begin{array}{l}\sqrt {x - 2y} = x + 3y - 2\\\sqrt {x - 2y} = - 2y\end{array} \right.$
x = 2 - 5y\\
y < 0\\
4{y^2} + 7y - 2 = 0
\end{array} \right. \Leftrightarrow \left( {x;y} \right) = \left( {12; - 2} \right).$
Vậy $\ S = \left\{ {\left( {12; - 2} \right),\left( {\frac{8}{3};\frac{4}{9}} \right)} \right\}.$
Không có nhận xét nào:
Đăng nhận xét