Loading web-font TeX/Math/Italic

Thứ Bảy, 30 tháng 8, 2014

Biến đổi để đưa về xét HÀM.

Đề bài: (Câu hỏi của bạn Tịnh Dương hỏi trên facebook Trợ Giúp Toán Học)
Giải hệ phương trình: \left\{ {\begin{array}{*{20}{l}} {4{x^3} - 3x + \left( {y - 1} \right)\sqrt {2y + 1}  = 0}\\ {2{x^2} + x + \sqrt { - y\left( {2y + 1} \right)}  = 0} \end{array}} \right.
Giải:
Điều kiện: -\frac{1}{2}\le x,y\le 0
4{{x}^{3}}-3x=-4.\frac{2y+1}{4}\sqrt{\frac{2y+1}{4}}-\left( -3\sqrt{\frac{2y+1}{4}} \right)\Leftrightarrow 4{{x}^{3}}-3x=4{{\left( -\sqrt{\frac{2y+1}{4}} \right)}^{3}}-\left( -3\sqrt{\frac{2y+1}{4}} \right)

Ta thấy khi -\frac{1}{2}\le x;y\le 0\Rightarrow -\frac{1}{2}\le x;-\sqrt{\frac{2y+1}{4}}\le 0 nên ta xét hàm đặc trưng:
f\left( t \right) = 4{t^3} - 3t;\,t \in \left[ { - \frac{1}{2};0} \right] \Rightarrow f'\left( t \right) = 3\left( {2t + 1} \right)\left( {2t - 1} \right) < 0 \Rightarrow f(t) nghịch biến trên\left[ -\frac{1}{2};0 \right] 
\Rightarrow f\left( x \right)=f\left( -\sqrt{\frac{2y+1}{4}} \right)\Leftrightarrow x=-\sqrt{\frac{2y+1}{4}}\Leftrightarrow -2x=\sqrt{2y+1}
Thế vào PT (2) ta có:
{\left( {2{x^2} + x} \right)^2} = 4{x^3} - x\left( { - \frac{1}{2} \le x \le 0} \right) \Leftrightarrow x\left( {4{x^3} + x + 1} \right) = 0 \Leftrightarrow \left( {x;y} \right) = \left( {0; - \frac{1}{2}} \right),\left( { - \frac{1}{2};0} \right)
                                      Vậy S=\left\{ \left( 0;-\frac{1}{2} \right),\left( -\frac{1}{2};0 \right) \right\}
         
Người Lái Đò Online - Trịnh Hào Quang

Không có nhận xét nào: