Giải:
V{T_{\left( * \right)}} = P = \frac{a}{{a + 6bc}} + \frac{b}{{b + 6ca}} + \frac{c}{{c + 6ab}} = \frac{{{a^2}}}{{{a^2} + 6abc}} + \frac{{{b^2}}}{{{b^2} + 6abc}} + \frac{{{c^2}}}{{{c^2} + 6abc}}
Áp dụng BĐT Cauchy-Schwarz ta có:
\begin{array}{l} {\left( {a + b + c} \right)^2} = {\left( {\sqrt {{a^2} + 6abc} .\frac{a}{{\sqrt {{a^2} + 6abc} }} + \sqrt {{b^2} + 6abc} .\frac{b}{{\sqrt {{b^2} + 6abc} }} + \sqrt {{c^2} + 6abc} .\frac{c}{{\sqrt {{c^2} + 6abc} }}} \right)^2}\\ \le \left( {{a^2} + {b^2} + {c^2} + 18abc} \right).P \Rightarrow P \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{{a^2} + {b^2} + {c^2} + 18abc}} = \frac{{{a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)}}{{{a^2} + {b^2} + {c^2} + 18abc}}\\ Q = ab + bc + ca = abc\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge \frac{{9abc}}{{a + b + c}} = 9abc \Rightarrow P \ge \frac{{{a^2} + {b^2} + {c^2} + 18abc}}{{{a^2} + {b^2} + {c^2} + 18abc}} = 1 \end{array}
Vậy BĐT được chứng minh. Dấu "=" xảy ra \ \Leftrightarrow \left\{ \begin{array}{l} a + b + c = 1\\ a = b = c \end{array} \right. \Leftrightarrow a = b = c = \frac{1}{3}
Không có nhận xét nào:
Đăng nhận xét