Cho \ \left\{ \begin{array}{l} a,b,c > 0\\ a + b + c = 1 \end{array} \right..\,\,CMR:\frac{{bc}}{{\sqrt {a + bc} }} + \frac{{ca}}{{\sqrt {b + ca} }} + \frac{{ab}}{{\sqrt {c + ab} }} \le \frac{1}{2}.
Giải:
\begin{array}{l} \frac{{bc}}{{\sqrt {a + bc} }} = \frac{{bc}}{{\sqrt {a\left( {a + b + c} \right) + bc} }} = \frac{{bc}}{{\sqrt {\left( {a + c} \right)\left( {a + b} \right)} }}\\ \Rightarrow \frac{{bc}}{{\sqrt {a + bc} }} + \frac{{ca}}{{\sqrt {b + ca} }} + \frac{{ab}}{{\sqrt {c + ab} }} \le \frac{{bc}}{{\sqrt {\left( {a + c} \right)\left( {a + b} \right)} }} + \frac{{ca}}{{\sqrt {\left( {a + b} \right)\left( {b + c} \right)} }} + \frac{{ab}}{{\sqrt {\left( {b + c} \right)\left( {c + a} \right)} }} \end{array}
Áp dụng BĐT Côsi ta có:\begin{array}{l} \left\{ \begin{array}{l} \frac{1}{{\sqrt {\left( {a + c} \right)\left( {a + b} \right)} }} \le \frac{1}{2}\left( {\frac{1}{{a + c}} + \frac{1}{{a + b}}} \right) \Rightarrow \frac{{bc}}{{\sqrt {\left( {a + c} \right)\left( {a + b} \right)} }} \le \frac{{bc}}{2}\left( {\frac{1}{{a + c}} + \frac{1}{{a + b}}} \right)\\ \frac{1}{{\sqrt {\left( {a + b} \right)\left( {b + c} \right)} }} \le \frac{1}{2}\left( {\frac{1}{{a + b}} + \frac{1}{{b + c}}} \right) \Rightarrow \frac{{ca}}{{\sqrt {\left( {a + b} \right)\left( {b + c} \right)} }} \le \frac{{ca}}{2}\left( {\frac{1}{{a + b}} + \frac{1}{{b + c}}} \right)\\ \frac{1}{{\sqrt {\left( {b + c} \right)\left( {c + a} \right)} }} \le \frac{1}{2}\left( {\frac{1}{{b + c}} + \frac{1}{{c + a}}} \right) \Rightarrow \frac{{ab}}{{\sqrt {\left( {b + c} \right)\left( {c + a} \right)} }} \le \frac{{ab}}{2}\left( {\frac{1}{{b + c}} + \frac{1}{{c + a}}} \right) \end{array} \right.\\ \Rightarrow \frac{{bc}}{{\sqrt {\left( {a + c} \right)\left( {a + b} \right)} }} + \frac{{ca}}{{\sqrt {\left( {a + b} \right)\left( {b + c} \right)} }} + \frac{{ab}}{{\sqrt {\left( {b + c} \right)\left( {c + a} \right)} }} \le \frac{1}{2}\left[ {\frac{{c\left( {a + b} \right)}}{{a + b}} + \frac{{a\left( {b + c} \right)}}{{b + c}} + \frac{{b\left( {c + a} \right)}}{{c + a}}} \right] = \frac{1}{2} \end{array}
Dấu "=" xảy ra khi và chỉ khi \ a = b = c = \frac{1}{3}.
Không có nhận xét nào:
Đăng nhận xét