Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có PT đường thẳng của AB, AC lần lượt là 4x-3y-20=0, 2x+y+10=0. Đường tròn (C) qua trung điểm của các đọan HA, HB, HC có phương trình (x-1)²+(y+2)²=25, với H là trực tâm của tam giác ABC. Tìm toạ độ điểm H, biết hoành độ điểm C lớn hơn -4.
Giải:
Gọi A', B', C' lần lượt là trung điểm của HA, HB, HC. O và O' lần lượt là tâm của (ABC) và (A'B'C').
Gọi H(a;b) khi đó:\ \left\{ \begin{array}{l} {x_O} = {x_H} + 2{x_{\overrightarrow {HO'} }}\\ {y_O} = {y_H} + 2{y_{\overrightarrow {HO'} }} \end{array} \right. \Rightarrow O\left( {2 - a; - 4 - b} \right)
\ \begin{array}{l} \Rightarrow \left( {ABC} \right):{\left( {x + a - 2} \right)^2} + {\left( {y + b + 4} \right)^2} = 100\\ A\left( { - 1; - 8} \right) \in \left( {ABC} \right) \Leftrightarrow {\left( {a - 3} \right)^2} + {\left( {b - 4} \right)^2} = 100. \end{array}