Processing math: 100%

Thứ Năm, 25 tháng 7, 2013

Khoảng cách giữa hai đường thẳng chéo nhau....

Đề bài: (Câu hỏi của bạn Nước Mắt Hoa Hồng hỏi)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm AB, AD. H là giao điểm của CN với DM. Biết SH vuông góc với (ABCD) và \ SH = a\sqrt 3 .. Tính theo a khoảng cách giữa DM và SC.
Giải:

- Trước hết chúng ta xét bài toán trong hình học phẳng:
"Chứng minh trong hình vuông ABCD thì \ CN \bot DM."
Thật vậy, ta thấy: \ \Delta ADM = \Delta DCM.\ \left\{ \begin{array}{l} AD = DC = a\\ AM = DN = \frac{a}{2}\\ \widehat {MAD} = \widehat {NDC} = {90^0} \end{array} \right. \Rightarrow \widehat {ADM} = \widehat {DCN}.
Mặt khác, \ \widehat {DCN} + \,\,\widehat {CND} = {90^0}.
\  \Rightarrow \widehat {ADM} + \widehat {CND} = {90^0}.
\  \Rightarrow \widehat {NHD} = {90^0} \Leftrightarrow CN \bot DM.
- Dựng đoạn vuông góc chung:
Trong (SHC) dựng \ HK \bot SC\left( {K \in SC} \right). Khi đó HK là đoạn vuông góc chung cần dựng. Thật vậy, \ \left\{ \begin{array}{l} SH \bot MD\\ CH \bot MD\\ HK \subset \left( {SHC} \right) \end{array} \right. \Rightarrow MD \bot \left( {SHC} \right) \Rightarrow MD \bot HK.
\ \left\{ \begin{array}{l} \frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{C{H^2}}}\\ \frac{1}{{D{H^2}}} = \frac{1}{{D{N^2}}} + \frac{1}{{D{C^2}}} = \frac{4}{{{a^2}}} + \frac{1}{{{a^2}}} \Rightarrow D{H^2} = \frac{{{a^2}}}{5}\\ C{H^2} = D{C^2} - D{H^2} = {a^2} - \frac{{{a^2}}}{5} = \frac{{4{a^2}}}{5} \end{array} \right.\  \Rightarrow \frac{1}{{H{K^2}}} = \frac{1}{{3{a^2}}} + \frac{5}{{4{a^2}}} \Leftrightarrow HK = \frac{{2a\sqrt {57} }}{{19}}.